Check answers A-O:	-3/4	1/3	5/2	5/2	no	3	3	8	81
	ln200	$ln\frac{2}{3}$	7^{4y-9}		7^{2y+5}	7^{7y-11}		yes	

A. Solve for x:

$$\log_5(3) + \log_5(4x + 7) = 2$$

B. Write as a single logarithm:

$$\ln 6 + 2\ln 10 - \frac{1}{3}\ln 27$$

C. Evaluate: $(\sqrt{2})^6$ Solve for

Solve for x by getting like bases on both sides:

D. Evaluate:
$$(\sqrt{3})^8$$
 E. $16^x = \frac{1}{8}$ F. $9^x = 243$

Evaluate as given (don't rewrite, solve the individual parts as is and follow proper order of operations!!)

J.	Is $\log_b \frac{m}{n} = \frac{\log_b m}{\log_b n}$???	
	according to your answers in parts I and H?	

Simplify by writing as a single base. Show work for parts L and N.

L.
$$\frac{7^{3y-2}}{7^{y-7}}$$
 M. $7^{y-7} \bullet 7^{3y-2}$ N. $7^{y-7} \bullet [7^{3y-2}]^2$

O. Solve for x. Clearly show ALL steps and use the proper order of operations when applying properties of logarithms.

$$\ln\left(\frac{4e^{3x}}{9}\right) = 5x$$