Check answers A-O:	$-3 / 4$	$1 / 3$	$5 / 2$	$5 / 2$	no	3	3	8	81
	$\ln 200$	$\ln \frac{2}{3}$	$7^{4 y-9}$	$7^{2 y+5}$		$7^{7 y-11}$	yes		

A. Solve for x :
$\log _{5}(3)+\log _{5}(4 \mathrm{x}+7)=2$
B. Write as a single logarithm:
$\ln 6+2 \ln 10-\frac{1}{3} \ln 27$
C. Evaluate: $(\sqrt{2})^{6}$

Solve for x by getting like bases on both sides:
D. Evaluate: $(\sqrt{3})^{8}$
E. $16^{x}=\frac{1}{8}$
F. $9^{x}=243$

Evaluate as given (don't rewrite, solve the individual parts as is and follow proper order of operations!!)
G.

H. $\frac{\log _{2} 32}{\log _{2} 4} \quad \frac{\square}{\square}=\square$
I. $\log _{2} \frac{32}{4}=\log _{2} \square$
\square
J. Is $\log _{b} \frac{m}{n}=\frac{\log _{b} m}{\log _{b} n}$???
according to your answers in parts I and H ?
K. Is $\log _{\mathrm{b}} \frac{m}{n}=\log _{\mathrm{b}} \mathrm{m}-\log _{\mathrm{b}} \mathrm{n}$ according to your answers in parts I and G ?

Simplify by writing as a single base. Show work for parts L and N .
L. $\frac{7^{3 y-2}}{7^{y-7}}$
M. $7^{y-7} \cdot 7^{3 y-2}$
N. $7^{y-7} \bullet\left[7^{3 y-2}\right]^{2}$
O. Solve for x . Clearly show ALL steps and use the proper order of operations when applying properties of logarithms.

$$
\ln \left(\frac{4 e^{3 x}}{9}\right)=5 x
$$

